Mobile Recommendation Based on Link Community Detection
نویسندگان
چکیده
Since traditional mobile recommendation systems have difficulty in acquiring complete and accurate user information in mobile networks, the accuracy of recommendation is not high. In order to solve this problem, this paper proposes a novel mobile recommendation algorithm based on link community detection (MRLD). MRLD executes link label diffusion algorithm and maximal extended modularity (EQ) of greedy search to obtain the link community structure, and overlapping nodes belonging analysis (ONBA) is adopted to adjust the overlapping nodes in order to get the more accurate community structure. MRLD is tested on both synthetic and real-world networks, and the experimental results show that our approach is valid and feasible.
منابع مشابه
Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملDynamic Load Carrying Capacity of Mobile-Base Flexible-Link Manipulators: Feedback Linearization Control Approach
This paper focuses on the effects of closed- control on the calculation of the dynamic load carrying capacity (DLCC) for mobile-base flexible-link manipulators. In previously proposed methods in the literature of DLCC calculation in flexible robots, an open-loop control scheme is assumed, whereas in reality, robot control is achieved via closed loop approaches which could render the calculated ...
متن کاملCS224W Project Final Report: Using community detection and link prediction to improve Amazon recommendations
As the largest online retailer, Amazon has a huge product base and community of reviewers. A lot of work has been done to determine reviewer communities [6], examine the user reviews of products to model opinion evaluation [7], study how information cascades contribute to opinion formation [6] and study product communities to improve recommendation engines. In this paper, we explore how we can ...
متن کاملLocal-First Algorithms for Community Detection
One of the most important problems in the field of social network analysis, and one of the most discussed ones, is community detection, aimed at clustering the nodes on the basis of their social relationships. Community detection is relevant in various fields, including: recommendation systems, link prediction and suggestion, epidemic spreading and information diffusion, sybil detection. In thi...
متن کاملCollaborative Filtering based on Dynamic Community Detection
With the increase of time-stamped data, the task of recommender systems becomes not only to fulfill users interests but also to model the dynamic behavior of their tastes. This paper proposes a novel architecture, called Dynamic Community-based Collaborative filtering (D2CF), that combines both recommendation and dynamic community detection techniques in order to exploit the temporal aspect of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014